
Package: microclass (via r-universe)
September 8, 2024

Encoding UTF-8

Type Package

Title Tools for taxonomic classification of prokaryotes

Version 1.2

Date 2023-08-21

Author Kristian Hovde Liland, Hilde Vinje, Lars Snipen

Maintainer Lars Snipen <lars.snipen@nmbu.no>

Description Functions for working with taxonomic classifications in R

License GPL (>= 2)

Depends R (>= 4.0.0), microseq, microcontax, data.table, dplyr,
stringr, rlang, Matrix

Imports Rcpp (>= 0.11.1), RcppParallel, tibble

LinkingTo Rcpp (>= 0.11.1), RcppEigen, RcppParallel

SystemRequirements GNU make

RoxygenNote 7.2.3

Suggests knitr, rmarkdown

VignetteBuilder knitr

Repository https://larssnip.r-universe.dev

RemoteUrl https://github.com/larssnip/microclass

RemoteRef HEAD

RemoteSha 3f3ac0ad10650957168e1d9d903e8eea138aae36

Contents
microclass-package . 2
blastClassify16S . 3
blastDbase16S . 4
bracken_read_report . 5
branch_list2qiime . 6

1

2 microclass-package

branch_list2table . 7
branch_prune . 8
branch_retrieve . 8
branch_taxid2name . 9
clr . 10
getDomain . 11
KmerCount . 12
kraken2_read_report . 13
kraken2_read_table . 14
multinomClassify . 15
multinomTrain . 17
rdpClassify . 18
rdpTrain . 19
read_names_dmp . 20
read_nodes_dmp . 21
setParallel . 22
small.16S . 23
subset_clade . 23
subset_tree . 24
taxMachine . 25

Index 27

microclass-package Methods for 16S based taxonomic classification of prokaryotes

Description

The package provides functions for assigning 16S sequence data to a taxonomic level in the tree-
of-life for prokaryotes.

Usage

microclass()

Details

Package: microclass
Type: Package
Version: 1.2
Date: 2023-08-21
License: GPL-2

blastClassify16S 3

Author(s)

Hilde Vinje, Kristian Hovde Liland, Lars Snipen.
Maintainer: Lars Snipen <lars.snipen@nmbu.no>

blastClassify16S Classifying using BLAST

Description

A 16S based classification based on BLAST.

Usage

blastClassify16S(sequence, bdb)

Arguments

sequence Character vector of 16S sequences to classify.

bdb Name of BLAST data base, see blastDbase16S.

Details

A vector of 16S sequences (DNA) are classified by first using BLAST blastn against a database
of 16S DNA sequences, and then classify according to the nearest-neighbour principle. The nearest
neighbour of a query sequence is the hit with the largest bitscore. The blast+ software https:
//blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download must be
installed on the system. Type system("blastn -help") in the Console window, and a sensible
Help-text should appear.

The database must contain 16S sequences where the Header starts with a token specifying the taxon.
More specifically, the tokens must look like:

<taxon>_1

<taxon>_2

...etc

where <taxon> is some proper taxon name. Use blastDbase16S to make such databases.

The identity of each alignment is also computed. This should be close to 1.0 for a classification
to be trusted. Identity values below 0.95 could indicate uncertain classifications, but this will vary
between taxa.

Value

A data.frame with two columns: Taxon is the predicted taxon for each sequence and Identity is
the corresponding identity-value. If no BLAST hit is seen, the sequence is "unclassified".

Author(s)

Lars Snipen.

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

4 blastDbase16S

See Also

blastDbase16S.

Examples

data("small.16S")
Not run:
dbase <- blastDbase16S("test", small.16S$Sequence, word(small.16S$Header, 2, 2))
reads <- str_sub(small.16S$Sequence, 100, 550)
blastClassify16S(reads, dbase) %>%

bind_cols(small.16S) -> tbl

End(Not run)

blastDbase16S Building a BLAST database

Description

Building a BLAST database for 16S based classification.

Usage

blastDbase16S(name, sequence, taxon)

Arguments

name The name of the database (text).

sequence A character vector with 16S sequence data.

taxon A character vector with taxon information.

Details

This functions builds a database using the makeblastdb program of the BLAST+ software https:
//blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download. Thus, this
software must be available on the system when using this function. If you type system("makeblastdb
-help") in the Console window some meaningful Help-text should be displayed.

This function is most typically used prior to blastClassify16S to set up the database before
searching and classifying. It can be seen as the ’training step’ of a BLAST-based classification
procedure.

The sequence must be a vector of DNA-sequences (16S sequences). The taxon is a vector of the
same length as sequence, containing the correpsonding taxon information.

Value

The database files are created, and the name of the database (name) is returned.

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

bracken_read_report 5

Author(s)

Lars Snipen.

See Also

blastClassify16S.

Examples

See examples for blastClassify16S.

bracken_read_report Reads bracken reports

Description

Reads the report output from bracken.

Usage

bracken_read_report(report.file)

Arguments

report.file name of file with bracken report output.

Details

The report output from bracken is a table with one row for each taxon with assigned reads. This is
the file produced by bracken using the -o option.

Note that by the -w option bracken will output a report in kraken2 format, see kraken2_read_report.

Value

A data.frame with the bracken results for each taxon. It has the columns:

• name. The name of this taxon in the taxonomy.

• tax_id. The taxonomy identifier of this taxon in the taxonomy.

• rank. The rank of this taxon in the taxonomy.

• tax_count_krk. The number of reads classified to this taxon by kraken2.

• added_brk. The additional reads assigned by bracken.

• tax_count. The final number of reads assigned to this taxon.

• fraction. The fraction of the total number of reads assigned to this taxon.

6 branch_list2qiime

Author(s)

Lars Snipen.

See Also

kraken2_read_report.

branch_list2qiime Branch list to QIIME format

Description

Creates QIIME formatted texts from a branch list.

Usage

branch_list2qiime(branch.lst)

Arguments

branch.lst a list of branches.

Details

A QIIME formatted branch is a text with the format

"d__domain;p__phylum;c__class;o__order;f__family;g__genus;s__species"

where the words domain, phylum, etc are replaced by taxon names. This function converts a list of
N branches to N such texts.

NOTE 1: This is only meaningful if the branch.lst contains names instead of tax_id’s, see
branch_taxid2name.

NOTE 2: The ranks are fixed to the ones listed above, where domain is the same as superkingdom
in the NCBI taxonomy.

Value

The vector of texts, one for each element in branch.lst.

Author(s)

Lars Snipen.

branch_list2table 7

branch_list2table Branch list na dtable conversion

Description

Turns a list of branches into a table with, or vice versa.

Usage

branch_list2table(
branch.lst,
ranks = c("superkingdom", "phylum", "class", "order", "family", "genus", "species")

)

Arguments

branch.lst a list of branches.

ranks texts specifying the ranks to keep and their ordering.

branch.tbl a table of branches.

Details

Instead of having branches in a list, it is convenient in R to have data in tables. The branch_list2table
converts a list of branches into a table, with one row for each branch and a column for each rank.
Since branches may contain different ranks, they must first be pruned to have the exact same ranks
in the exact same order. This is done by branch_prune inside this function. The ranks specified in
ranks are the columns in the table returned here.

The function branch_table2list converts back again, i.e. from a table to a list.

Value

The branch_list2table returns a tibble with one row for each branch and a column for each rank.
The cells contain the tax_id’s or names in the branch.lst.

The branch_table2list returns a list where each element contains a named vector of tax_id or
texts, and the name of each element is its rank in the taxonomy.

Author(s)

Lars Snipen.

8 branch_retrieve

branch_prune Filtering ranks in branches

Description

Keeps only specified ranks in specified ordering in all branches.

Usage

branch_prune(
branch.lst,
ranks = c("superkingdom", "phylum", "class", "order", "family", "genus", "species")

)

Arguments

branch.lst a list of branches.

ranks texts specifying the ranks to keep and their ordering.

Details

Branches in the taxonomy tree may have many different ranks or levels. This function is used to
prune them all to have the same set of ranks. Ranks may be missing in some branches.This function
will then fill in NA in these cells, ensuring all branches have the exact same ranks in the exact same
ordering. This is convenient for turning the list into a table, using as_tibble.

Value

A new branch-list with pruned branches all containing the exact same ranks.

Author(s)

Lars Snipen.

branch_retrieve Retrieves branches

Description

Retrieves branches in the taxonomy tree.

Usage

branch_retrieve(leaf_tax_id, nodes.dmp)

branch_taxid2name 9

Arguments

leaf.tax.id a vector of tax_id (integers) of the branch leaf/leaves.

nodes.dmp a nodes.dmp table.

Details

This function retrieves the branch from the taxonomy tree that ends at the leaf.tax.id and starts
at the root of tree defined in the table nodes.dmp (see read_nodes_dmp).

NB! Only the root node in nodes.dmp must have its own tax_id as parent_tax_id! This is the
criterion for ending a branch.

Multiple leaves may be given as argument, resulting in multiple branches retrieved.

Value

A branch list, which is simply a list containing named vectors of tax_id integers, from the root to
the leaf of each branch. The name of each element is its rank. You may replace the tax_id integers
by the taxon names using branch_taxid2name.

Author(s)

Lars Snipen.

See Also

branch_taxid2name, subset_clade.

branch_taxid2name Replace tax_id with name

Description

Converts vectors of tax_id to vectors of names, or vice versa.

Usage

branch_taxid2name(branch.lst, names.dmp)

Arguments

branch.lst a list of branches.

names.dmp a names.dmp table.

10 clr

Details

This function is used to convert the tax_id’s to name_txt’s in a branch-list, or vice versa. See
branch_retrieve for more about branch-lists.

branch_taxid2name: The names.dmp$name_txt may contain many names for each tax_id, and the
argument name.class is used to select the type of name to use from the column names.dmp$name_class.

branch_name2taxid: The matching of names is exact (using match), which means only the first
occurrence of the name_txt is used. You are responsible for using a names.dmp with unique texts in
names.dmp$name_txt.

See read_names_dmp for more about names.dmp tables.

Value

A list containing named vectors of either texts (branch_taxid2name) or integers (branch_name2taxid),
from the root to the leaf of each branch. The name of each element is its rank.

Author(s)

Lars Snipen.

clr Centred log-ratio transform

Description

Transforms readcount-matrix with Aitchisons transform.

Usage

clr(readcount.mat, n.pseudo = 1)

Arguments

readcount.mat matrix with readcount data.

n.pseudo number of pseudo-readcounts to add.

Details

This is a standard implementation of the Aitchisons centered log-ratio transform (Aitchison 1986)
for compositional data. Readcount data can be seen as compositional data since the total number
of readcounts in a sample does not carry any information about the biology, but is simply an effect
of sequencing depth. Thus, the information in the data lies in the relative values, not the absolute.
By transforming such data with this function, you get data who are better suited for a number of
downstream analyses, e.g. typically analyses making use of sum-of-squares type of statistics, like
PCA, PLS, ANOVA or clustering with euclidean distances.

The readcount.mat must have the samples in the rows and the taxa in the columns. Transpose if
necessary.

getDomain 11

The transform does not accept zeros in any cell of the readcount.mat. To cope with this you add
pseudo-counts. Bu default 1 additional read is assigned to all cells in readcount.mat. You may
change this value, and it need not be an integer. The rationale behind this is that we a priori assume
a uniform distribution of the taxa, and the more pseudo-counts you add, the more weight you give
to this prior.

Value

A matrix of same size as the input, but with transformed readcounts.

Author(s)

Lars Snipen.

References

Aitchison J. The Statistical Analysis of Compositional Data. London, UK: Chapman & Hall; 1986.

getDomain Extractor functions for QIIME taxonomy

Description

Extracting taxonomic information from FASTA headers.

Usage

getDomain(header)
getPhylum(header)
getClass(header)
getOrder(header)
getFamily(header)
getGenus(header)
getTag(header)
getTaxonomy(header)

Arguments

header A vector of texts, the Header column from reading a FASTA file, containing
taxonomy information in the proper format.

Details

The ConTax data sets (see package microcontx) are FASTA files where the Header contains texts
according to a strict format inherited from QIIME:

It always starts with a short text, a Tag, which is a unique identifier for every sequence. The function
getTag will extract this from the header.

12 KmerCount

After the Tag follows one or more tokens. One of these tokens is a string with the following format,
inherited from QIIME:

"k__<...>;p__<...>;c__<...>;o__<...>;f__<...>;g__<...>;"

where <...> is some proper text. Here is an example of a proper string:

"k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus;"

The functions getDomain, ..., getGenus extracts the corresponding information from the header.
getTaxonomy combines all taxonomy extractors, combines these in a table and imputes missing
taxa with parent taxa.

Value

A vector containing the sub-texts extracted from each header text, but getTaxonomy returns a table
with the full taxonomy, one row for each input header

Author(s)

Lars Snipen.

See Also

contax.trim, medoids.

Examples

data(contax.trim)
getTag(contax.trim$Header)
getGenus(contax.trim$Header)
getPhylum(contax.trim$Header)

KmerCount K-mer counting

Description

Counting overlapping words of length K in DNA/RNA sequences.

Usage

KmerCount(sequences, K = 1, col.names = FALSE)

Arguments

sequences Vector of sequences (text).

K Word length (integer).

col.names Logical indicating if the words should be added as columns names.

kraken2_read_report 13

Details

For each input sequence, the frequency of every word of length K is counted. Counting is done with
overlap. The counting itself is done by a C++ function.

With col.names = TRUE the K-mers are added as column names, but this makes the computations
slower.

Value

A matrix with one row for each sequence in sequences and one column for each possible word of
lengthK.

Author(s)

Kristian Hovde Liland and Lars Snipen.

See Also

multinomTrain, multinomClassify.

Examples

KmerCount("ATGCCTGAACTGACCTGC", K = 2)

kraken2_read_report Reads kraken2 reports

Description

Reads the report output from kraken2.

Usage

kraken2_read_report(report.file)

Arguments

report.file name of file with kraken2 report output.

Details

The report output from kraken2 is a table with one row for each taxon detected by kraken2. Run
kraken2 using the --report option to get this convenient summary table.

Note that the software bracken may also output a report in this format.

14 kraken2_read_table

Value

A data.frame with the kraken2 results for each taxon. It has the columns:

• percent. The percentage of the reads classified to this taxon.

• clade_count. The total number of reads classified to the clade originating from this taxon.

• tax_count. The number of reads assigned directly to this taxon.

• rank. The rank of this taxon in the taxonomy.

• tax_id. The taxonomy identifier of this taxon in the taxonomy.

• name. The name of this taxon in the taxonomy.

Author(s)

Lars Snipen.

See Also

kraken2_read_table, bracken_read_report.

kraken2_read_table Reads raw kraken2 output

Description

Reads the raw output table from kraken2.

Usage

kraken2_read_table(krk.file, filter = TRUE)

Arguments

krk.file name of file with raw kraken2 output.

filter. returns only classified reads if TRUE.

Details

The raw output from kraken2 is a huge table with one row for each read classified.

Note that in most cases only the report, produced by running kraken2 with the --report otpion, is
what you want. Then use the function kraken2_read_report.

multinomClassify 15

Value

A data.frame with the kraken2 results for each read. It has the columns:

• status. C for classified reads, U for unclassified (if filter = TRUE only C).

• read_id. Short text identifying each read.

• name. Name of taxon, if classified.

• length. Length of read.

• tax_count. The k-mer counts for the read.

Author(s)

Lars Snipen.

See Also

kraken2_read_report.

multinomClassify Classifying with a Multinomial model

Description

Classifying sequences by a trained Multinomial model.

Usage

multinomClassify(
sequence,
multinom.prob,
post.prob = FALSE,
prior = FALSE,
full.post.prob = FALSE

)

Arguments

sequence Character vector of sequences to classify.

multinom.prob A matrix of multinomial probabilities, see multinomTrain.

post.prob Logical indicating if posterior log-probabilities should be returned.

prior Logical indicating if classification should be done by flat priors (default) or with
empirical priors.

full.post.prob Logical indicating if full posterior probability matrix should be returned.

16 multinomClassify

Details

The classification step of the multinomial method (Vinje et al, 2015) means counting K-mers on all
sequences, and computing the posterior probabilities for each taxon given the trained model. The
predicted taxon for each input sequence is the one with the maximum posterior probability for that
sequence.

By setting post.prob = TRUE you will get the log-probability of the best and second best taxon for
each sequence. This may be used for evaluating the certainty in the classifications.

The classification is parallelized through RcppParallel employing Intel TBB and TinyThread. By
default all available processing cores are used. This can be changed using the function setParallel.

Value

If post.prob = FALSE a character vector of predicted taxa is returned.

If post.prob = TRUE a data.frame with three columns is returned.

• taxon. The predicted taxa, one for each sequence in sequence.

• post_prob. The posterior log-probability of the assigned taxon.

• post_prob_2. The largest posterior log-probability of the other taxa.

Author(s)

Kristian Hovde Liland and Lars Snipen.

References

Vinje, H, Liland, KH, Almøy, T, Snipen, L. (2015). Comparing K-mer based methods for improved
classification of 16S sequences. BMC Bioinformatics, 16:205.

See Also

KmerCount, multinomTrain.

Examples

data("small.16S")
seq <- small.16S$Sequence
tax <- sapply(strsplit(small.16S$Header,split=" "),function(x){x[2]})
Not run:
trn <- multinomTrain(seq,tax)
primer.515f <- "GTGYCAGCMGCCGCGGTAA"
primer.806rB <- "GGACTACNVGGGTWTCTAAT"
reads <- amplicon(seq, primer.515f, primer.806rB)
predicted <- multinomClassify(unlist(reads[nchar(reads)>0]),trn)
print(predicted)

End(Not run)

multinomTrain 17

multinomTrain Training multinomial model

Description

Training the multinomial K-mer method on sequence data.

Usage

multinomTrain(sequence, taxon, K = 5, col.names = FALSE, n.pseudo = 1)

Arguments

sequence Character vector of sequences.

taxon Character vector of taxon labels for each sequence.

K Word length (integer).

col.names Logical indicating if column names (K-mers) should be added to the trained
model matrix.

n.pseudo Number of pseudo-counts to use (positive numerics, need not be integer). Spe-
cial case -1 will only return word counts, not log-probabilities.

Details

The training step of the multinomial method (Vinje et al, 2015) means counting K-mers on all
sequences and compute their multinomial probabilities for each taxon. n.pseudo pseudo-counts are
added equally to all K-mers, before probabilities are estimated. The optimal choice of n.pseudo
will depend on K and the training data set.

Adding the actual K-mers as column names (col.names = TRUE) will slow down the computations.

The relative taxon frequencies in the taxon input are also computed and returned as an attribute to
the probability matrix.

Value

A matrix with the multinomial probabilities, one row for each taxon and one column for each
K-mer. The sum of each row is 1.0. No probabilities are 0 if n.pseudo > 0.0.

The matrix has an attribute attr("prior",), that contains the relative taxon frequencies.

Author(s)

Kristian Hovde Liland and Lars Snipen.

References

Vinje, H, Liland, KH, Almøy, T, Snipen, L. (2015). Comparing K-mer based methods for improved
classification of 16S sequences. BMC Bioinformatics, 16:205.

18 rdpClassify

See Also

KmerCount, multinomClassify.

Examples

See examples for multinomClassify

rdpClassify Classifying with the RDP classifier

Description

Classifying sequences by a trained presence/absence K-mer model.

Usage

rdpClassify(sequence, trained.model, post.prob = FALSE, prior = FALSE)

Arguments

sequence Character vector of sequences to classify.

trained.model A list with a trained model, see rdpTrain.

post.prob Logical indicating if posterior log-probabilities should be returned.

prior Logical indicating if classification should be done by flat priors (default) or with
empirical priors (prior=TRUE).

Details

The classification step of the presence/absence method known as the RDP classifier (Wang et al
2007) means looking for K-mers on all sequences, and computing the posterior probabilities for
each taxon using a trained model and a naive Bayes assumption. The predicted taxon is the one
producing the maximum posterior probability, for each sequence.

The classification is parallelized through RcppParallel employing Intel TBB and TinyThread. By
default all available processing cores are used. This can be changed using the function setParallel.

Value

A character vector with the predicted taxa, one for each sequence.

Author(s)

Kristian Hovde Liland and Lars Snipen.

rdpTrain 19

References

Wang, Q, Garrity, GM, Tiedje, JM, Cole, JR (2007). Naive Bayesian Classifier for Rapid Assign-
ment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Enviromental Microbiol-
ogy, 73: 5261-5267.

See Also

rdpTrain.

Examples

data("small.16S")
seq <- small.16S$Sequence
tax <- sapply(strsplit(small.16S$Header,split=" "),function(x){x[2]})
Not run:
trn <- rdpTrain(seq,tax)
primer.515f <- "GTGYCAGCMGCCGCGGTAA"
primer.806rB <- "GGACTACNVGGGTWTCTAAT"
reads <- amplicon(seq, primer.515f, primer.806rB)
predicted <- rdpClassify(unlist(reads[nchar(reads)>0]),trn)
print(predicted)

End(Not run)

rdpTrain Training the RDP classifier

Description

Training the RDP presence/absence K-mer method on sequence data.

Usage

rdpTrain(sequence, taxon, K = 8, cnames = FALSE)

Arguments

sequence Character vector of 16S sequences.

taxon Character vector of taxon labels for each sequence.

K Word length (integer).

cnames Logical indicating if column names should be added to the trained model matrix.

20 read_names_dmp

Details

The training step of the RDP method means looking for K-mers on all sequences, and computing the
probability of each K-mer being present for each unique taxon. This is an attempt to re-implement
the method described by Wang et tal (2007), but without the bootstrapping. See that publications
for all details.

The word-length K is by default 8, since this is the value used by Wang et al. Larger values may lead
to memory-problems since the trained model is a matrix with 4^K columns. Adding the K-mers as
column names will slow down all computations.

The relative taxon sizes are also computed, and returned as an attribute to the model matrix. They
may be used as empirical priors in the classification step.

Value

A list with two elements. The first element is Method, which is the text "RDPclassifier" in this
case. The second element is Fitted, which is a matrix with one row for each unique taxon and one
column for each possible word of length K. The value in row i and column j is the probability that
word j is present in taxon i.

Author(s)

Kristian Hovde Liland and Lars Snipen.

References

Wang, Q, Garrity, GM, Tiedje, JM, Cole, JR (2007). Naive Bayesian Classifier for Rapid Assign-
ment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Enviromental Microbiol-
ogy, 73: 5261-5267.

See Also

rdpClassify.

Examples

See examples for rdpClassify.

read_names_dmp Read and write the names.dmp

Description

Reads and writes the file names.dmp of the NCBI Taxonomy

Usage

read_names_dmp(filename)
write_names_dmp(names.dmp, filename)

read_nodes_dmp 21

Arguments

filename name of file to be read or written to (text).

names.dmp a names.dmp table (see details below).

Details

The file pair names.dmp and nodes.dmp describe a taxonomy tree. The read_names_dmp reads a file
formatted as the names.dmp file from the NCBI Taxonomy database (https://www.ncbi.nlm.nih.gov/taxonomy/).
This is represented as a tibble in R.

The write_names_dmp will write a table with the proper columns (see below) to a file, adding the
separators of the NCBI format.

Value

The read_names_dmp returns a tibble with the columns: tax_id (integers), name_txt (text),
unique_name (text) and name_class (text).

Author(s)

Lars Snipen.

See Also

read_nodes_dmp.

read_nodes_dmp Read and write the nodes.dmp

Description

Reads and writes the file nodes.dmp of the NCBI Taxonomy

Usage

read_nodes_dmp(filename)
write_nodes_dmp(names.dmp, filename)

Arguments

filename name of file to be read or written to.

nodes.dmp a nodes.dmp table (see details below).

22 setParallel

Details

The file pair names.dmp and nodes.dmp describe a taxonomy tree. The read_nodes_dmp reads a file
formatted as the nodes.dmp file from the NCBI Taxonomy database (https://www.ncbi.nlm.nih.gov/taxonomy/).
This is represented as a tibble in R.

The write_nodes_dmp will write a table with the proper columns (see below) to a file, adding the
separators of the NCBI format.

The nodes.dmp table downloaded from NCBI will contain many columns, but only the first 3 of
them are relevant for parsing the taxonomy tree. Only these first three columns are read and used
by these functions, additional columns are ignored.

Value

The read_nodes_dmp returns a tibble with the columns: tax_id (integers), parent_tax_id (in-
tegers) and rank (text).

Author(s)

Lars Snipen.

See Also

read_nodes_dmp.

setParallel Set number of parallel threads

Description

Simple function to set the number of threads to use in parallel computations. The default equals
all available logical cores. An integer is interpreted as the number of threads. A numeric < 1 is
interpreted as a proportion of the avialable logical cores.

Usage

setParallel(C = NULL)

Arguments

C a scalar indicating the number of threads, default = NULL (#available logical
cores)

Value

NULL, returned silently.

small.16S 23

Examples

Not run:
setParallel() # Use all available logical cores.

End(Not run)

small.16S A small example data set

Description

A tibble object (data.frame) with some 16S sequences with taxon information.

Usage

data(small.16S)

Details

This is a tibble object (data.frame) with 71 sequences used in some examples. The taxonomy
information for each sequence follows the ConTax format, see the microcontax package for more
details.

Author(s)

Hilde Vinje, Kristian Hovde Liland, Lars Snipen.

Examples

data(small.16S)
str(small.16S)

subset_clade Subset the taxonomy tree from the root

Description

Retrieves a clade from the taxonomy tree.

Usage

subset_clade(root.tax.id, nodes.dmp)

24 subset_tree

Arguments

root.tax.id the tax_id of the clade root (integer).

nodes.dmp a nodes.dmp table.

Details

This function retrieves a clade from the taxonomy tree listed in the table nodes.dmp (see read_nodes_dmp).
The clade starts at the single taxon specified in root_tax_id and contains all descending branches.

If you want to subset the taxonomy tree based on leaf nodes, see subset_tree.

Value

A subset of the table nodes.dmp containing the clade that descends from root.tax.id.

Author(s)

Lars Snipen.

See Also

read_nodes_dmp, subset_tree.

subset_tree Subset the taxonomy tree from leaves

Description

Retrieves a sub-tree from the taxonomy tree.

Usage

subset_tree(leaf_tax_id, nodes.dmp)

Arguments

leaf.tax.id a vector of tax_id (integers) of the branch leaf/leaves.

nodes.dmp a nodes.dmp table.

Details

This function retrieves a sub-tree by starting at the vector of specified leaf_tax_id and collect all
branches ending at these nodes. Thus, it will in general not be a clade. If you want to subset an
entire clade, see subset_clade.

Value

A subset of the table nodes.dmp containing the tax_id’s of the branches ending at leaf_tax_id.

taxMachine 25

Author(s)

Lars Snipen.

See Also

read_nodes_dmp, subset_clade.

taxMachine Classifying 16S sequences

Description

Multinomial classification of 16S sequence data.

Usage

taxMachine(
sequence,
model.in.memory = TRUE,
model.on.disk = FALSE,
verbose = TRUE,
chunk.size = 10000

)

Arguments

sequence Character vector with DNA sequences.
model.in.memory

Logical indicating if model should be cached in memory (default=TRUE).

model.on.disk Logical or text, for reading/saving models, see Deatils below (default=FALSE).

verbose Logical, if TRUE progress is reported during computations (default=TRUE).

chunk.size The number of sequence to classify in each iteration of the loop (default=10000).

Details

This function provides an optimized taxonomy classifications from 16S sequence data.

All sequences are classified to the genus level based on a Multinomial model (see multinomTrain)
trained on the designed consensus taxonomy data set contax.trim found in the R-package microcontax.
The word length K=8 has been used in the model.

To avoid saving fitted models in the package, a model is trained the first time you run taxMachine in
an R session. This takes only a few seconds, and the result is cached for latter use if model.in.memory
is TRUE.

If a path to an existing file with a trained model is supplied in model.on.disk, this Multinomial
model is read from the file and used. If a path to a new file is supplied, the trained Multinomial
model will be saved to that file. The default (model.on.disk=FALSE), means no files are read/saved,

26 taxMachine

while model.on.disk=TRUE will attempt to load/save models from the microclass/extdata di-
rectory.

Both verbose and chunk.size are used to monitor the progress, which is nice when classifying
huge data sets, since this will take some time.

Value

A data.frame with one row for each sequence. The columns are Genus, D.score, R.score and
P.recognize.

Genus is the predicted genus for each sequence. Note that all sequences get a prediction, but may
still be more or less reliable.

The D.score is a measure of how the predicted genus wins over all other genera in the race for being
the chosen one. A large D.score means the winner stands out clearly, and we can be confident it is
the correct genus. A D.score close to 0 means we have an uncertain classification. Only D.scores
below 1.0, should be of any concern, see Liland et al (2016) for details.

The R.score is a measure of the models ability to recognize the sequence. The more negative the
R.score gets, the more unusual the sequence is compared to the training set (the contax.trim data
set). The P.recognize is a rough probability of seing an R.score this small, or smaller, given the
training data. Thus, a very small P.recognize means the sequence is not really recognized, and the
classification is worthless. A very negative R.score indicates either not 16S at all, many sequencing
errors that has destroyed the read, or a completely new taxon never seen before. See Liland et al
(2016) for details.

Author(s)

Lars Snipen and Kristian Hovde Liland

References

Liland, KH, Vinje, H, Snipen, L (2016). microclass - An R-package for 16S taxonomy classifica-
tion. BMC Bioinformatics, xx:yy.

See Also

KmerCount, multinomClassify.

Examples

Not run:
data(small.16S)
tax.tab <- taxMachine(small.16S$Sequence)

End(Not run)

Index

∗ package
microclass-package, 2

as_tibble, 8

blastClassify16S, 3, 4, 5
blastDbase16S, 3, 4, 4
bracken_read_report, 5, 14
branch_list2qiime, 6
branch_list2table, 7
branch_name2taxid (branch_taxid2name), 9
branch_prune, 7, 8
branch_retrieve, 8, 10
branch_table2list (branch_list2table), 7
branch_taxid2name, 6, 9, 9
branch_taxid2name, (branch_taxid2name),

9

clr, 10
contax.trim, 12, 25, 26

getClass (getDomain), 11
getDomain, 11
getFamily (getDomain), 11
getGenus (getDomain), 11
getOrder (getDomain), 11
getPhylum (getDomain), 11
getTag (getDomain), 11
getTaxonomy (getDomain), 11

KmerCount, 12, 16, 18, 26
kraken2_read_report, 5, 6, 13, 14, 15
kraken2_read_table, 14, 14

match, 10
medoids, 12
microclass (microclass-package), 2
microclass-package, 2
microcontax, 23
multinomClassify, 13, 15, 18, 26
multinomTrain, 13, 15, 16, 17, 25

rdpClassify, 18, 20
rdpTrain, 18, 19, 19
read_names_dmp, 10, 20
read_nodes_dmp, 9, 21, 21, 22, 24, 25

setParallel, 16, 18, 22
small.16S, 23
subset_clade, 9, 23, 24, 25
subset_tree, 24, 24

taxMachine, 25

write_names_dmp (read_names_dmp), 20
write_nodes_dmp (read_nodes_dmp), 21

27

	microclass-package
	blastClassify16S
	blastDbase16S
	bracken_read_report
	branch_list2qiime
	branch_list2table
	branch_prune
	branch_retrieve
	branch_taxid2name
	clr
	getDomain
	KmerCount
	kraken2_read_report
	kraken2_read_table
	multinomClassify
	multinomTrain
	rdpClassify
	rdpTrain
	read_names_dmp
	read_nodes_dmp
	setParallel
	small.16S
	subset_clade
	subset_tree
	taxMachine
	Index

